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Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, 
Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of 
space missions grows, the complexity of supporting FM systems increase in turn. Data on 
recent NASA missions show that development of FM capabilities is a common driver for 
significant cost overruns late in the project development cycle.  Efforts to understand the 
drivers behind these cost overruns, spearheaded by NASA’s Science Mission Directorate 
(SMD), indicate that they are primarily caused by the growing complexity of FM systems 
and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM 
systems that effectively protect mission functionality and assets. The cost growth results 
from a lack of FM planning and emphasis by project management, as well the maturity of 
FM as an engineering discipline, which lags behind the maturity of other engineering 
disciplines. As a step towards controlling the cost growth associated with FM development, 
SMD has commissioned a multi-institution team to develop a practitioner’s handbook 
representing best practices for the end-to-end processes involved in engineering FM systems. 
While currently concentrating primarily on FM for science missions, the expectation is that 
this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA 
Systems Engineering Handbook. This paper presents a snapshot of the principles that have 
been identified to guide FM development from cradle to grave. The principles range from 
considerations for integrating FM into the project and SE organizational structure, the 
relationship between FM designs and mission risk, and the use of the various tools of FM 
(e.g., redundancy) to meet the FM goal of protecting mission functionality and assets. 

I. Introduction 
In April 2008, the National Aeronautics and Space Administration’s (NASA) Science Mission Directorate 

(SMD) Planetary Science Division (PSD) sponsored the first in what is hoped will become a series of Fault 
Management Workshops. The workshop was initiated as a response to the cost overruns in FM development and 
testing experienced in a number of recent PSD missions, and identified as a significant driver for total life cycle cost 
overruns in a study performed by the Discovery and New Frontiers Program Office at Marshall Space Flight 
Center1. FM cost overruns for a representative project are illustrated in Figure 1. The workshop was conceived as 
the first step in understanding and ultimately controlling these cost overruns. 
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considered during system trade studies and often must force trades at various levels and across multiple subsystems 
or within the subsystems. FM requirements must be developed at the system level to ensure a cohesive approach. 
FM engineering utilizes and contributes to the results of traditional reliability analyses. Implementation of FM 
functions typically is distributed across all elements of the project: hardware, software, and operations. Thus, FM 
requirements must be defined and clearly allocated to the implementing teams early enough to ensure that the effort 
is fully estimated and the required implementation resources are available. 

However, unlike systems engineering, FM is also a subsystem with flight and ground system deliverables. Even 
if most of the implementation is allocated outside of the FM team (e.g., to the FSW team), the FM engineers are 
responsible for FM requirements development and allocation, FM analysis, FM algorithm and parameter 
development, FM system and subsystem testing, and FM testing and operations procedures. 

Therefore, a project’s organizational structure and delegation of roles/responsibilities/authority must support the 
flow of information to and from FM engineering, and allow trades to be clearly communicated and resolved across 
traditional subsystem and engineering disciplines. FM engineers need to be constantly aware of the global nature of 
engineering decisions that can affect FM and FM decisions that can affect overall system complexity and operations. 
FM engineers need to be aware of and coordinate with the scheduled activities of the various project teams. 

B. FM Scope and Boundary 
Principle: Specify the system boundary so that it encompasses everything that detects, evaluates, and responds 

to failures as part of the system, including vehicle, crew, operators, and ground systems. The environment typically 
lies outside of the boundary; however, the system must function within expected environmental conditions. 

The placement of the system boundary is an essential concept for FM. The system boundary defines the limit of 
responsibility and/or interest, beyond which the team or engineer is not required to control faults. The FM boundary 
also clearly identifies the full set of functionality encompassed by FM.  

Outside of the boundary lies the environment, which the system cannot alter, but within which the system must 
execute its mission. Although the environment lies outside of the system, the FM practitioner must understand the 
interactions of the system across the boundary to the environment to ensure the system functions properly within the 
environment. As an example, the expected radiation levels through the life of the mission sets the environment 
within which the FM system must protect mission functionality. However, it may be beyond the mission resources 
and FM scope to attempt to preserve functionality through radiation levels resulting from the solar storm of the 
century. In either case, the careful specification of the system boundary, including the expected environmental 
conditions ensures the necessary FM protections are developed, while controlling unnecessary growth in capability 
and complexity. 

Inside the boundary, FM functionality is typically distributed across multiple elements of the system and 
multiple phases of use, with specific (and often redundant) capabilities assigned to hardware, software, and 
operational elements. Depending on the mission design, risk posture, and resources available to the mission it can be 
common for the mission operators and/or crew (for human spaceflight missions) to perform essential FM functions. 
All hardware, software, procedures, and personnel that are required for implementing, testing, and operating the 
mission must be included within the FM boundary of the system.  

There is also a “nominal operations” side within the FM boundary that must be addressed: setting FM 
parameters, developing spacecraft deployment sequences, monitoring FM processing, reporting on FM actions, and 
supporting troubleshooting of both system and FM behaviors. The FM design must ensure that the information 
required to trace and resolve faults or failures is available in telemetry and preserved through a cascade of 
faults/failures in order to allow ground reconstruction and root cause analysis. 

The system-level FM engineer must address the entire FM scope, and must set the system boundary to 
encompass all mechanisms that perform FM functions. Once defined, the FM designer must carefully document the 
system boundary conditions that define the environment within which the system must correctly execute its 
function(s). These boundary conditions not only define the physical environment (e.g., thermal, radiation, wind, 
landing surface), but the risk posture accepted for each mission, and the operating environment (e.g., time delays 
necessitating autonomous operations) within which the mission must execute. This documented system boundary 
underpins the FM requirements and design, and helps control cost growth late in the development cycle. 

C. FM Development as Part of Systems Engineering 
Principle: Design, analyze, verify, and validate FM with respect to the system’s failure modes in parallel with 

development of the nominal system behaviors. 
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system’s overall goals and objectives, the mission’s risk posture, and the functions that must be performed to 
achieve them. 

For example, it is appropriate in many emergencies for the system to abandon some of its current functions to 
preserve assets for the long run. Spacecraft safing is the most common example. It is acceptable to abandon some 
current functions while preserving those functions that protect the vehicle and its assets by shedding loads, stopping 
the current mission activity, reducing functions to the very smallest and simplest set to enable pointing back to Earth 
so that mission operators can diagnose the fault and recover from the failure. This can be done because those 
functions can be interrupted in order to preserve assets for future use, when they are needed in the science-gathering 
phase of the mission. The functions are re-started, usually by ground-based operators, upon failure recovery and 
used at the crucial mission time. 

F. Risk Reduction 
Statement of Principle: The FM implementation should always increase the reliability and safety of a system. 
FM is a tool to reduce and manage overall mission risk. As such FM should deploy highly reliable and effective 

mechanisms that can be shown to reduce the overall mission risk, even though FM inherently adds more physical 
and logical mechanisms and hence potentially more failure modes and paths. 

In the zeal to preserve functionality and assets, it is easy for the FM practitioner to be caught in a spiral of trying 
to protect the protection. Even the most simplistic case, where in the process of detecting and responding to a fault 
the FM design introduces an alternate fault path, the FM practitioner may be doing nothing more than increasing the 
overall complexity of the system. Each FM detection/response should be carefully evaluated to ensure it does not 
increase the risk posture of the mission, and that the benefit of the preservation of function or assets outweighs the 
increase in system complexity. Even if FM can be designed to cover all failure modes per requirements, if there are 
inadequate verification and validation resources to ensure the increased complexity of the design is adequately 
tested, then either the FM scope or the test assets must be reconsidered. 

G. FM Mechanism Allocation 
Statement of Principle: Allocate FM functions to the appropriate design mechanism types, including hardware, 

software, operations, or any combination thereof, keeping in mind the complexity of the evolving FM system and the 
risk posture and resource constraints for the mission. 

FM is often perceived as primarily a software function. For others, redundant hardware components are the 
cornerstone of FM. It is easy to concentrate on one type of failure, e.g., random part failure, or one FM strategy, e.g., 
design-time fault avoidance, to the exclusion of all else. Alternatively, FM designs often are inherited from previous 
missions without consideration of the applicability of the heritage FM capabilities and mechanisms to the current 
mission (from FM concept and architecture through operations). However, FM is not “one size fits all.” The FM 
implementation for a 15-year flagship mission or a deep space mission with long return time delays will be more 
complex than that for a 1-year Explorer class mission in low Earth orbit. A simple mission with a single-string 
hardware design may require more onboard automation to meet mission goals and, therefore, a more complex 
software design, that a larger mission with significant hardware redundancy. FM requirements for human space 
flight are more extensive than for robotic “proof of concept” missions. 

There are five strategies used by FM:  
 failure prevention: 

o design-time fault avoidance and 
o operational failure avoidance, 

 and, failure tolerance: 
o failure masking, 
o failure recovery, and 
o goal change, 

along with a full spectrum of mechanisms that should be considered for implementing the FM strategies. Different 
FM strategies and mechanisms are appropriate for different failure modes and mission types or for different mission 
phases (i.e., design vs. implementation and operations).  

In failure prevention, actions are taken to ensure that failures will not occur. Failures can be prevented by 
designing function and FM capabilities to minimize the risk of a fault and resulting failure. For example, common 
examples of design-time fault avoidance are the use of stricter quality assurance processes or higher quality parts, or 
applying increased mission margins. Failures also can be prevented operationally, when analysis is used to predict 
that a failure is likely occur in the future. Operations personnel can then take action, possibly reducing the frequency 
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of use of a component. For example, operations may change the spacecraft attitude profile to reduce momentum 
build-up and the use of thrusters for momentum dumps. A decision might be made to switch to a backup component 
to prevent a failure from interrupting a critical activity. Alternatively, a model parameter could be modified (e.g., 
increasing a thermal limit or a wheel spin-down time) to reflect changes to aging components or changes in the 
mission environment during different operational phases.  

In failure tolerance, failures are allowed to occur, but their effects are mitigated or accepted. Failures can be 
masked, steps can be taken recover from a temporary failure before the failure compromises a mission goal, or as a 
final response mission goals can be changed to new, usually degraded goals, that can be achieved. Failure masking 
is a variant of failure response in which failure effects are “hidden” from the rest of the system. The most common 
example of failure masking is a voting scheme in which a failed component is outvoted by two other identical 
components.  

Failure recovery is defined as the actions taken to return the system to operations after a failure. In some cases, 
operations after recovery may be identical to operations prior to the failure, with no change of goals or functions. 
This would be the case for failover to an identical redundant hardware component or a computer reboot. However, 
recovery to normal operation may require a new goal (one different from the original goal) for the system. An 
example of this would be turning off instruments to continue operations in a lower power configuration. Failure 
recovery can be an autonomous recovery by the flight system for sophisticated FM systems or may require 
intervention by the ground if time constraints allow. However, failure recovery may also include maintenance or 
supportability actions as a part of the failure recovery. An example is a launch vehicle scrub. The failure recovery in 
this case may include repair and/or replacement of the failed component, reloading propellant tanks, and recycling 
the launch sequence to a point where it can be restarted. 

Goal change is defined as an action that alters the system’s current goals. Goal changes occur for many reasons, 
not just for FM. It is therefore not exclusively an FM function, but is shared with many other vehicle and mission 
functions and capabilities such as mission planning and operations, operational modes, and vehicle configuration 
controls. However, the most typical FM goal change is “safing.” Usually the goal change is to a “degraded goal” or 
a subset of the system’s original goals. For example, with spacecraft safing, the current science objectives may be 
abandoned while the spacecraft maintains the goals of ensuring a power-positive system and a communications link 
with Earth. In the case of a human-rated launch vehicle, an ascent abort abandons the goal of achieving orbit, but 
maintains the goal of keeping the crew safe. To do this, it specifies a different, achievable goal -- to return the crew 
capsule and crew back to Earth. 

Part of the consideration of the appropriate FM mechanism is timing. FM is effective only if its responses 
execute fast enough to mitigate the effect of the failures to which each FM response applies. The race condition 
between the latencies of the mechanisms for detection and response to a failure and the temporal evolution of failure 
effects as they propagate through the system must be assessed for every FM mechanism that is included in the 
system. The assessment must include all latencies including communication with the ground, required analysis and 
human response times. 

Selection of FM strategies, and ultimately the FM mechanisms used to implement the strategies, needs to be 
driven by the required mission functionality, the available mission resources across the mission life cycle, and the 
accepted risk posture for the mission. In general, as with many other areas, the FM practitioner should select the 
simplest solution (mechanism) that provides the required protection to preserve mission functionality and assets 
within the mission context and constraints. 

H. Tailoring Redundancy 
Statement of Principle: Mission attributes drive the use of redundancy. 
Redundancy is a fundamental aspect of FM designs. In fact, redundancy, particularly hardware redundancy, is 

often seen as the primary approach for preserving mission functionality. However, redundancy takes different forms 
based on the potential type of fault. There are four different approaches to redundancy: hardware identical, 
functional, informational, and temporal. Each of these approaches is better suited to handling different types of 
failures (e.g., common-mode/design faults, random part failure, or human error). When redundancy is included in 
the FM design, the FM engineer needs to consider the effectiveness of the approach in the FM design, limitations on 
it, and the mechanism(s) controlling the redundancy as part of the justification of the design. 

Hardware identical redundancy can be used for failure detection, fault isolation, and for failure response 
(mitigation). A voting mechanism in a multiply-redundant computing system (usually 3 or more units) is both a 
mechanism for detecting failures in one of the computers and a mechanism for isolating the location of the 
originating fault. Hardware-identical redundancy can also be used to mitigate random failures and expected lifetime 
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limitations. In these cases, a single redundant unit is normally powered off until switchover when the primary unit 
fails. Typical examples would be the inclusion of more identical reaction wheel assemblies than required for 
operations, or inclusion of an identical backup computer. However, hardware-identical redundancy cannot usually 
mitigate a “common cause failure,” a design flaw or manufacturing/assembly flaw common among all of the 
redundant hardware. 

Functional redundancy, the use of dissimilar hardware, software, or operations procedures to perform identical 
functions, can be used for failure detection, by using non-identical measurements of related physical parameters. 
The dissimilar mechanism can provide the same information content as a crosscheck on the validity of an individual 
measurement. It also can be used for failure prevention, by using multiple independent mechanisms for initiating 
critical activities (e.g., a database enable/disable flags, an operator confirmation, and separate hardware commands 
to arm and fire a pyro valve). Finally, it also can be used as part of a planned autonomous failure response (e.g., 
failover to a “safe mode” computer) or an unplanned workaround for an in-flight anomaly (e.g., use of a thruster to 
replace the function of a failed reaction wheel). 

Information redundancy utilizes extra information to detect, isolate, and respond to certain types of failures. The 
most common example is error detection and correction codes (EDAC) in which extra bits are added to a message 
that can be used to reconstruct the original message if some phenomenon (e.g., a single event upset (SEU)) causes 
one or more bits to flip.  

Temporal redundancy refers to the practice of repeating a function should it fail upon a single execution. A 
typical example is the use of several measurements over time of the same state variable, because any single 
measurement could be corrupted by a SEU. Another common example in computer processing is the checkpoint-
rollback capability, where a computer state is reverted (rolled back) to a previously stored computer state (the 
checkpoint), and then re-started to recompute the original set of calculations. 

A high-cost, low risk mission may utilize several forms of redundancy to protect a required function during a 
critical activity. For example, a flagship robotic mission may use temporal redundancy (persistence) to avoid 
reacting to a transient condition, failover to a “hot” backup computer, and finally failover to a dissimilar computer, 
to protect operations during orbit insertion at the mission target. However, there are mission scenarios for which 
hardware or onboard functional or informational redundancy is not a practical option. Small, low cost missions may 
not be able to afford backup hardware; highly mass-constrained missions may not have the mass margins that permit 
multiple versions of identical hardware. In these cases, other approaches may be necessary. Software algorithms 
rather than alternate hardware can be used to provide functional redundancy; when time permits, operations 
personnel rather than onboard voting schemes can provide informational redundancy. Mission attributes, such as 
mission class, presence of crew, operational scenarios and specific operational hazards, mission cost/resource 
availability, and mission risk posture, should be used to drive the need for, and the use of, the appropriate type of 
redundancy. 

IV. Conclusion 
The principles in the NASA FM Handbook are designed to guide FM throughout the project life cycle. As such, 

they address both organizational and architecture/design considerations for FM. They are not intended to be a set of 
rules or requirements, but to provide guidance to each implementing organization within the NASA community. 
They represent the collected experience from decades of successful mission development and operation at NASA. 
They underpin and motivate the best practices identified in the NASA FM Handbook, and provide the framework 
within which an individual organization can define their own institutional processes and procedures.  

Given that the principles are expected to represent the collected experience of FM, the authors solicit and 
encourage continued discussion of FM principles, best practices, and lessons learned through the ongoing review of 
the NASA FM Handbook, future NASA FM Workshops, and other venues, as available. 

Appendix A. Glossary 
Anomaly: The unexpected performance of intended function. 
Failure: The unacceptable performance of an intended function. 
Failure Detection: Determining that something unexpected occurred. Also referred to as fault detection. 
Failure Preclusion: Actively preventing a failure from occurring. 
Failure Response: An action taken to attempt to retain or regain the system’s ability to control the system state in 
reaction to a failure. 
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Failure Tolerance: The ability to perform a function in the presence of any of a specified number of coincident, 
independent failure causes of specified types. 
Fault: A physical or logical cause, which explains a failure. 
Fault Management: The engineering discipline that encompasses practices which enable an operational system to 
contain, prevent, detect, isolate, diagnose, respond to, and recover from conditions that may interfere with nominal 
mission operations. 
Goal Change: An action that alters the system’s current objective. 
Nominal: An intended, acceptable state or behavior. 
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